Affiliation:
1. Department of Biology, San Diego State University, San Diego, CA, USA
Abstract
Abstract
Background and Aims
Pinyon pine hybridization is widely acknowledged, but the frequency of and contributors to such interspecific mating remain largely unstudied. Pinus quadrifolia has three to four needles per fascicle, suggesting that it is a result of hybridization between the five-needled P. juarezensis and the single-needled P. monophylla. In this study we address the taxonomic validity of P. juarezensis, the hybrid origin of P. quadrifolia and the presence of hybridization and intermediate morphology as a result of interspecific hybridization in this complex.
Methods
We address these questions by combining a genomic and morphological approach. We generated 1868 single nucleotide polymorphisms (SNPs) to detect genetic clusters using principal co-ordinates analyis, discriminant analysis of principal components, fastSTRUCTURE and ADMIXTURE analyses, and performed a morphological analysis of the leaves.
Key Results
We found that the five-needled pinyons did not differ genetically from the four-needled P. quadrifolia, reducing the status of P. juarezensis to P. quadrifolia. We also found no evidence that P. quadrifolia is of hybrid origin from P. juarezensis × P. monophylla but is instead a genetically distinct species with natural needle number variation that has yet to be explained. Hybridization does occur in this complex, but mostly between P. quadrifolia and P. californiarum, and less commonly between P. quadrifolia and P. monophylla. Interestingly, some hybrid derivatives were detected between both single-needled taxa, P. monophylla and P. californiarum, a hybrid combination that has not yet been proposed. Hybrids have intermediate morphology when they have similar genetic contributions from both parental species; however, when one parent contributes more, hybrid derivatives resemble the parent with higher genetic contribution, resulting in cryptic introgression.
Conclusions
Our detailed sampling across the distribution of this complex allows us to describe the patterns of hybridization among these taxa, resolves an ancient taxonomic conflict and provides insights into the challenges of exclusively using morphological traits when identifying these taxa with cryptic hybridization and variable morphology.
Funder
Hispanic-Serving Institutions Education
National Institute of Food and Agriculture
U.S. Department of Agriculture
National Science Foundation
Publisher
Oxford University Press (OUP)
Reference65 articles.
1. Hybridization and speciation;Abbott;Journal of Evolutionary Biology,2013
2. Fast model-based estimation of ancestry in unrelated individuals;Alexander;Genome Research,2009
3. A model-based method for identifying species hybrids using multilocus genetic data;Anderson;Genetics,2002
4. A study of Pinus subsection Cembroides. I: the single-needle pinyons of the Californias and the Great Basin;Bailey;Notes from the Royal Botanic Garden, Edinburgh,1987
5. Hybrid zones and reproductive isolation;Bigelow;Evolution,1965
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献