On the use of GBLUP and its extension for GWAS with additive and epistatic effects

Author:

Zhang Jie1,Liu Fang1ORCID,Reif Jochen C1ORCID,Jiang Yong1ORCID

Affiliation:

1. Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Stadt Seeland, Germany

Abstract

Abstract Genomic best linear unbiased prediction (GBLUP) is the most widely used model for genome-wide predictions. Interestingly, it is also possible to perform genome-wide association studies (GWAS) based on GBLUP. Although the estimated marker effects in GBLUP are shrunken and the conventional test based on such effects has low power, it was observed that a modified test statistic can be produced and the result of test was identical to a standard GWAS model. Later, a mathematical proof was given for the special case that there is no fixed covariate in GBLUP. Since then, the new approach has been called “GWAS by GBLUP”. Nevertheless, covariates such as environmental and subpopulation effects are very common in GBLUP. Thus, it is necessary to confirm the equivalence in the general case. Recently, the concept was generalized to GWAS for epistatic effects and the new approach was termed rapid epistatic mixed-model association analysis (REMMA) because it greatly improved the computational efficiency. However, the relationship between REMMA and the standard GWAS model has not been investigated. In this study, we first provided a general mathematical proof of the equivalence between “GWAS by GBLUP” and the standard GWAS model for additive effects. Then, we compared REMMA with the standard GWAS model for epistatic effects by a theoretical investigation and by empirical data analyses. We hypothesized that the similarity of the two models is influenced by the relative contribution of additive and epistatic effects to the phenotypic variance, which was verified by empirical and simulation studies.

Funder

China Scholarship Council

The GeneBank2.0

Federal Ministry of Education and Research of Germany

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3