Lysines K117 and K147 play conserved roles in Ras activation from Drosophila to mammals

Author:

Singh Jiya12,Karunaraj Prashath123,Luf Max12,Pfleger Cathie M123

Affiliation:

1. Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai , New York, NY 10029 , USA

2. The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai , New York, NY 10029 , USA

3. The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai , New York, NY 10029 , USA

Abstract

Abstract Ras signaling plays an important role in growth, proliferation, and developmental patterning. Maintaining appropriate levels of Ras signaling is important to establish patterning in development and to prevent diseases such as cancer in mature organisms. The Ras protein is represented by Ras85D in Drosophila and by HRas, NRas, and KRas in mammals. In the past dozen years, multiple reports have characterized both inhibitory and activating ubiquitination events regulating Ras proteins. Inhibitory Ras ubiquitination mediated by Rabex-5 or Lztr1 is highly conserved between flies and mammals. Activating ubiquitination events at K117 and K147 have been reported in mammalian HRas, NRas, and KRas, but it is unclear if these activating roles of K117 and K147 are conserved in flies. Addressing a potential conserved role for these lysines in Drosophila Ras activation requires phenotypes strong enough to assess suppression. Therefore, we utilized oncogenic Ras, RasG12V, which biases Ras to the GTP-loaded active conformation. We created double mutants RasG12V,K117R and RasG12V,K147R and triple mutant RasG12V,K117R,K147R to prevent lysine-specific post-translational modification of K117, K147, or both, respectively. We compared their phenotypes to RasG12V in the wing to reveal the roles of these lysines. Although RasG12V,K147R did not show compelling or quantifiable differences from RasG12V, RasG12V,K117R showed visible and quantifiable suppression compared to RasG12V, and triple mutant RasG12V,K117R,K147R showed dramatic suppression compared to RasG12V and increased suppression compared to RasG12V,K117R. These data are consistent with highly conserved roles for K117 and K147 in Ras activation from flies to mammals.

Funder

National Institutes of Health

National Institute of General Medical Sciences

Tisch Cancer Institute Cancer Center Support Grant

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3