miR-9a regulates levels of both rhomboid mRNA and protein in the early Drosophila melanogaster embryo

Author:

Gallicchio Lorenzo1ORCID,Griffiths-Jones Sam1ORCID,Ronshaugen Matthew2ORCID

Affiliation:

1. School of Biological Sciences, Faculty of Medicine, Biology and Health, Michael Smith Building, The University of Manchester, Manchester M13 9GB, UK

2. School of Medical Sciences, Faculty of Medicine, Biology and Health, Michael Smith Building, The University of Manchester, Manchester M13 9GB, UK

Abstract

Abstract MicroRNAs can have subtle and combinatorial effects on the levels of the targets and pathways they act on. Studying the consequences of a single microRNA knockout often proves difficult as many such knockouts exhibit phenotypes only under stress conditions. This has often led to the hypothesis that microRNAs buffer the effects of intrinsic and environmental stochasticity on gene expression. Observing and understanding this buffering effect entails quantitative analysis of microRNA and target expression in single cells. To this end, we have employed single-molecule fluorescence in situ hybridization, immunofluorescence, and high-resolution confocal microscopy to investigate the effects of miR-9a loss on the expression of the serine-protease Rhomboid in Drosophila melanogaster early embryos. Our single-cell quantitative approach shows that spatially, the rhomboid mRNA pattern is identical in WT and miR-9a knockout embryos. However, we find that the number of mRNA molecules per cell is higher when miR-9a is absent, and the level and temporal accumulation of rhomboid protein shows a more dramatic increase in the miR-9a knockout. Specifically, we see accumulation of rhomboid protein in miR-9a mutants by stage 5, much earlier than in WT. The data, therefore, show that miR-9a functions in the regulation of rhomboid mRNA and protein levels. While further work is required to establish whether rhomboid is a direct target of miR-9 in Drosophila, our results further establish the miR-9 family microRNAs as conserved regulators of timing in neurogenic processes. This study shows the power of single-cell quantification as an experimental tool to study phenotypic consequences of microRNA mis-regulation.

Funder

Wellcome Trust funded 4-years PhD studentship

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3