The expression of Drosophila melanogaster Hox gene Ultrabithorax is not overtly regulated by the intronic long noncoding RNA lncRNA:PS4 in a wild-type genetic background

Author:

Hermann Anita1,Kosman Dave1,McGinnis William1,Tour Ella1ORCID

Affiliation:

1. Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0355, USA

Abstract

Abstract Long noncoding RNAs (lncRNAs) have been implicated in a variety of processes in development, differentiation, and disease. In Drosophila melanogaster, the bithorax Hox cluster contains three Hox genes [Ultrabithorax (Ubx), abdominal-A, and Abdominal-B], along with a number of lncRNAs, most with unknown functions. Here, we investigated the function of a lncRNA, lncRNA:PS4 that originates in the second intron of Ubx and is transcribed in the antisense orientation to Ubx. The expression pattern of lncRNA:PS4 is complementary to Ubx in the thoracic primordia, and the lncRNA:PS4 coding region overlaps the location of the large insertion that causes the dominant homeotic mutation Contrabithorax-1 (UbxCbx-1), which partially transforms Drosophila wings into halteres via ectopic activation of Ubx. This led us to investigate the potential role of this lncRNA in regulation of Ubx expression. The UbxCbx-1 mutation dramatically changes the pattern of lncRNA:PS4, eliminating the expression of most lncRNA:PS4 sequences from parasegment 4 (where Ubx protein is normally absent) and ectopically activating lncRNA:PS4 at high levels in the abdomen (where Ubx is normally expressed). These changes, however, did not lead to changes in the Ubx embryonic transcription pattern. Targeted deletion of the two promoters of lncRNA:PS4 did not result in the change of Ubx expression in the embryos. In the genetic background of a UbxCbx-1 mutation, the lncRNA:PS4 mutation does slightly enhance the ectopic activation of Ubx protein expression in wing discs and also slightly enhances the wing phenotype seen in UbxCbx-1 heterozygotes.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3