A fast algorithm to factorize high-dimensional tensor product matrices used in genetic models

Author:

Lopez-Cruz Marco1ORCID,Pérez-Rodríguez Paulino2,de los Campos Gustavo134ORCID

Affiliation:

1. Department of Epidemiology and Biostatistics, Michigan State University , East Lansing, MI 48824 , USA

2. Socioeconomía, Estadística e Informática, Colegio de Postgraduados , Montecillos, Edo. de México 56230 , Mexico

3. Department of Statistics and Probability, Michigan State University , East Lansing, MI 48824 , USA

4. Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, MI 48824 , USA

Abstract

Abstract Many genetic models (including models for epistatic effects as well as genetic-by-environment) involve covariance structures that are Hadamard products of lower rank matrices. Implementing these models requires factorizing large Hadamard product matrices. The available algorithms for factorization do not scale well for big data, making the use of some of these models not feasible with large sample sizes. Here, based on properties of Hadamard products and (related) Kronecker products, we propose an algorithm that produces an approximate decomposition that is orders of magnitude faster than the standard eigenvalue decomposition. In this article, we describe the algorithm, show how it can be used to factorize large Hadamard product matrices, present benchmarks, and illustrate the use of the method by presenting an analysis of data from the northern testing locations of the G × E project from the Genomes to Fields Initiative (n ∼ 60,000). We implemented the proposed algorithm in the open-source “tensorEVD” R package.

Funder

National Science Foundation

United States Department of Agriculture

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3