Reference genome assembly for Australian Ascochyta lentis isolate Al4

Author:

Lee Robert C1ORCID,Farfan-Caceres Lina1,Debler Johannes W1ORCID,Williams Angela H2ORCID,Syme Robert A1ORCID,Henares Bernadette M1ORCID

Affiliation:

1. Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia

2. Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia

Abstract

Abstract Ascochyta lentis causes ascochyta blight in lentil (Lens culinaris Medik.) and yield loss can be as high as 50%. With careful agronomic management practices, fungicide use, and advances in breeding resistant lentil varieties, disease severity and impact to farmers have been largely controlled. However, evidence from major lentil producing countries, Canada and Australia, suggests that A. lentis isolates can change their virulence profile and level of aggressiveness over time and under different selection pressures. In this paper, we describe the first genome assembly for A. lentis for the Australian isolate Al4, through the integration of data from Illumina and PacBio SMRT sequencing. The Al4 reference genome assembly is almost 42 Mb in size and encodes 11,638 predicted genes. The Al4 genome comprises 21 full-length and gapless chromosomal contigs and two partial chromosome contigs each with one telomere. We predicted 31 secondary metabolite clusters, and 38 putative protein effectors, many of which were classified as having an unknown function. Comparison of A. lentis genome features with the recently published reference assembly for closely related A. rabiei show that genome synteny between these species is highly conserved. However, there are several translocations and inversions of genome sequence. The location of secondary metabolite clusters near transposable element and repeat-rich genomic regions was common for A. lentis as has been reported for other fungal plant pathogens.

Funder

Australian Grains Research and Development Corporation

Pawsey Supercomputing Centre, Kensington, Western Australia

National Computational Infrastructure

Australian Government

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3