Current genetic conservation of Chinese indigenous horses revealed with Y-chromosomal and mitochondrial DNA polymorphisms

Author:

Liu Shuqin123,Fu Chunzheng12,Yang Yunzhou12,Zhang Yuanyuan2,Ma Hongying12,Xiong Zhiyao12,Ling Yao1245,Zhao Chunjiang12456ORCID

Affiliation:

1. Equine Center, China Agricultural University, Beijing, China

2. College of Animal Science and Technology, China Agricultural University, Beijing, China

3. College of Animal Science and Technology, Qingdao Agricultural University, Shandong, China

4. Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China

5. Beijing Key Laboratory of Animal Genetic Improvement, Beijing, China

6. National Engineering Laboratory for Animal Breeding. Beijing, China

Abstract

Abstract To investigate the genetic diversity of Chinese indigenous horses and determine the genetic status of extant horse breeds, novel Y chromosomal microsatellite markers and known Y chromosomal SNPs and mtDNA loop sequences, were employed to study the genetic diversity levels of 13 Chinese indigenous horse populations and four introduced breeds. Sixteen Y-chromosomal microsatellite markers, including seven newly identified loci, were used in the genotyping. The results showed that 4 out of the 16 loci were highly polymorphic in Chinese indigenous horse populations, in which the polymorphisms of 3 loci, ECAYP12, ECAYP13, and ECAYCAU3, were first reported in the present study. The polymorphic Y chromosomal microsatellite markers result in 19 haplotypes in the studied horses and formed 24 paternal lines when merged with the 14 Y chromosomal SNPs reported previously. The haplotypes CHT18 and SS24 harboring AMELY gene mutation were the ancestral haplotypes, and other haplotypes were derived from them by one or more mutation steps. The horse populations in mountainous and remote areas of southwestern China have the most ancient paternal lines, which suggests that ancient paternal lines preserved in local populations attributed to less human interventions. Our results also showed that the northern local breeds had higher mtDNA diversity than the southern ones in China. The frequency of haplogroup B, F, and G of mtDNA in Chinese indigenous horses has declined in recent years, and some breeds are in endangered status mainly due to small population sizes. Urgent actions should be taken to conserve the genetic diversity of the indigenous horse populations, especially the rare paternal lines. Our findings help to elucidate the genetic diversity and evolutionary history of Chinese domestic horses, which will facilitate the conservation of the indigenous horses in the future.

Funder

Project of Investigation on Animal Genetic Resources of Livestock and Poultry in Qinghai Tibet Plateau

Ministry of Agriculture and Rural Affairs

Public Science and Technology Research Funds Projects of Agriculture

Program for Changjiang Scholars and Innovative Research Team in University

Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3