A polygenic basis for birth weight in a wild population of red deer (Cervus elaphus)

Author:

Gauzere Julie12,Pemberton Josephine M1,Slate Jon3,Morris Alison1,Morris Sean1,Walling Craig A1,Johnston Susan E1ORCID

Affiliation:

1. Institute of Evolutionary Biology, University of Edinburgh , Edinburgh EH9 3FL , UK

2. AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro , 34090 Montpellier , France

3. School of Biosciences, University of Sheffield , Sheffield S10 2TN , UK

Abstract

AbstractThe genetic architecture of traits under selection has important consequences for the response to selection and potentially for population viability. Early QTL mapping studies in wild populations have reported loci with large effect on trait variation. However, these results are contradicted by more recent genome-wide association analyses, which strongly support the idea that most quantitative traits have a polygenic basis. This study aims to re-evaluate the genetic architecture of a key morphological trait, birth weight, in a wild population of red deer (Cervus elaphus), using genomic approaches. A previous study using 93 microsatellite and allozyme markers and linkage mapping on a kindred of 364 deer detected a pronounced QTL on chromosome 21 explaining 29% of the variance in birth weight, suggesting that this trait is partly controlled by genes with large effects. Here, we used data for more than 2,300 calves genotyped at >39,000 SNP markers and two approaches to characterise the genetic architecture of birth weight. First, we performed a genome-wide association (GWA) analysis, using a genomic relatedness matrix to account for population structure. We found no SNPs significantly associated with birth weight. Second, we used genomic prediction to estimate the proportion of variance explained by each SNP and chromosome. This analysis confirmed that most genetic variance in birth weight was explained by loci with very small effect sizes. Third, we found that the proportion of variance explained by each chromosome was slightly positively correlated with its size. These three findings highlight a highly polygenic architecture for birth weight, which contradicts the previous QTL study. These results are probably explained by the differences in how associations are modelled between QTL mapping and GWA. Our study suggests that models of polygenic adaptation are the most appropriate to study the evolutionary trajectory of this trait.

Funder

Natural Environment Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3