Testing the accuracy of 3D automatic landmarking via genome-wide association studies

Author:

Savriama Yoland1ORCID,Tautz Diethard1ORCID

Affiliation:

1. Department Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany

Abstract

Abstract Various advances in 3D automatic phenotyping and landmark-based geometric morphometric methods have been made. While it is generally accepted that automatic landmarking compromises the capture of the biological variation, no studies have directly tested the actual impact of such landmarking approaches in analyses requiring a large number of specimens and for which the precision of phenotyping is crucial to extract an actual biological signal adequately. Here, we use a recently developed 3D atlas-based automatic landmarking method to test its accuracy in detecting QTLs associated with craniofacial development of the house mouse skull and lower jaws for a large number of specimens (circa 700) that were previously phenotyped via a semiautomatic landmarking method complemented with manual adjustment. We compare both landmarking methods with univariate and multivariate mapping of the skull and the lower jaws. We find that most significant SNPs and QTLs are not recovered based on the data derived from the automatic landmarking method. Our results thus confirm the notion that information is lost in the automated landmarking procedure although somewhat dependent on the analyzed structure. The automatic method seems to capture certain types of structures slightly better, such as lower jaws whose shape is almost entirely summarized by its outline and could be assimilated as a 2D flat object. By contrast, the more apparent 3D features exhibited by a structure such as the skull are not adequately captured by the automatic method. We conclude that using 3D atlas-based automatic landmarking methods requires careful consideration of the experimental question.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3