Genetic background and mistranslation frequency determine the impact of mistranslating tRNASerUGG

Author:

Berg Matthew D12ORCID,Zhu Yanrui1,Loll-Krippleber Raphaël3,San Luis Bryan-Joseph4,Genereaux Julie1,Boone Charles4ORCID,Villén Judit2ORCID,Brown Grant W3ORCID,Brandl Christopher J1ORCID

Affiliation:

1. Department of Biochemistry, The University of Western Ontario , London, ON N6A 5C1, Canada

2. Department of Genome Sciences, University of Washington , Seattle, WA 98195, USA

3. Department of Biochemistry, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, ON M5S 3E1, Canada

4. Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, ON M5S 1A8, Canada

Abstract

Abstract Transfer RNA variants increase the frequency of mistranslation, the misincorporation of an amino acid not specified by the “standard” genetic code, to frequencies approaching 10% in yeast and bacteria. Cells cope with these variants by having multiple copies of each tRNA isodecoder and through pathways that deal with proteotoxic stress. In this study, we define the genetic interactions of the gene encoding tRNASerUGG,G26A, which mistranslates serine at proline codons. Using a collection of yeast temperature-sensitive alleles, we identify negative synthetic genetic interactions between the mistranslating tRNA and 109 alleles representing 91 genes, with nearly half of the genes having roles in RNA processing or protein folding and turnover. By regulating tRNA expression, we then compare the strength of the negative genetic interaction for a subset of identified alleles under differing amounts of mistranslation. The frequency of mistranslation correlated with the impact on cell growth for all strains analyzed; however, there were notable differences in the extent of the synthetic interaction at different frequencies of mistranslation depending on the genetic background. For many of the strains, the extent of the negative interaction with tRNASerUGG,G26A was proportional to the frequency of mistranslation or only observed at intermediate or high frequencies. For others, the synthetic interaction was approximately equivalent at all frequencies of mistranslation. As humans contain similar mistranslating tRNAs, these results are important when analyzing the impact of tRNA variants on disease, where both the individual’s genetic background and the expression of the mistranslating tRNA variant need to be considered.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interplay between mistranslation and oxidative stress in Escherichia coli;Archives of Industrial Hygiene and Toxicology;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3