Mutation, selection, and the prevalence of the Caenorhabditis elegans heat-sensitive mortal germline phenotype

Author:

Saber Sayran1,Snyder Michael1,Rajaei Moein1,Baer Charles F12ORCID

Affiliation:

1. Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA

2. University of Florida Genetics Institute, Gainesville, FL 32610, USA

Abstract

Abstract Caenorhabditis elegans strains with the heat-sensitive mortal germline phenotype become progressively sterile over the course of a few tens of generations when maintained at temperatures near the upper range of C. elegans’ tolerance. Mortal germline is transgenerationally heritable, and proximately under epigenetic control. Previous studies have suggested that mortal germline presents a relatively large mutational target and that mortal germline is not uncommon in natural populations of C. elegans. The mortal germline phenotype is not monolithic. Some strains exhibit a strong mortal germline phenotype, in which individuals invariably become sterile over a few generations, whereas other strains show a weaker (less penetrant) phenotype in which the onset of sterility is slower and more stochastic. We present results in which we (1) quantify the rate of mutation to the mortal germline phenotype and (2) quantify the frequency of mortal germline in a collection of 95 wild isolates. Over the course of ∼16,000 meioses, we detected one mutation to a strong mortal germline phenotype, resulting in a point estimate of the mutation rate UMrt≈ 6×10−5/genome/generation. We detected no mutations to a weak mortal germline phenotype. Six out of 95 wild isolates have a strong mortal germline phenotype, and although quantification of the weak mortal germline phenotype is inexact, the weak mortal germline phenotype is not rare in nature. We estimate a strength of selection against mutations conferring the strong mortal germline phenotype s¯≈0.1%, similar to selection against mutations affecting competitive fitness. The appreciable frequency of weak mortal germline variants in nature combined with the low mutation rate suggests that mortal germline may be maintained by balancing selection.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3