A high-quality genome assembly of Lactarius hatsudake strain JH5

Author:

Shen Airong12ORCID,Luo Chen1ORCID,Tan Yun2ORCID,Shen Baoming2ORCID,Liu Lina2ORCID,Li Jilie1ORCID,Tan Zhuming2ORCID,Zeng Liangbin3ORCID

Affiliation:

1. Central South University of Forestry and Technology , Changsha 410004, China

2. Hunan Academy of Forestry , Changsha 410004, China

3. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, China

Abstract

Abstract Lactarius hatsudake is a species of Lactarius commonly found in pine forests, is edible with a delicious and nutritious fruiting body, and exhibits medicinal properties. It is an ideal natural multifunctional food with bioactive components including fungal polysaccharides, crude fiber, unsaturated fatty acids, nucleic acid derivatives, various amino acids, and vitamins. However, biological and genomic analyses of this mycorrhizal mushroom are sparse, thereby hindering large-scale cultivation. Previously, we isolated and screened L. hatsudake JH5 strains and have applied our garnered knowledge to the large-scale cultivation of mycorrhizal seedlings. In this study, we produced a high-quality genome assembly of L. hatsudake JH5 by combining Illumina paired-end and PacBio single molecule real-time sequencing, resulting in PacBio single molecule real-time reads of 7.67 Gb and Illumina Pair-End reads of 1,560 Mb. Based on the distribution of k-mer frequencies, the genome size of this strain was estimated to be 63.84 Mb (1.14% heterozygosity). Based on de novo genome assembly, the final genome size was determined to be 76.7 Mb, with scaffold N50 of 223.2 kb and N90 of 54.5 kb, and a GC content of 54.38%. BUSCO assessment showed that genome completeness was 89.0%. The N50 length of the JH5 genome was 43.6% longer than that of the previously published L. hatsudake MG20 genome. This high-quality L. hatsudake genome assembly will facilitate research on the functional genome, molecular breeding, yield enhancement, and sustainability of L. hatsudake cultivation.

Funder

Hunan Key R&D Program

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3