Parallel evolution of the G protein-coupled receptor GrlG and the loss of fruiting body formation in the social amoeba Dictyostelium discoideum evolved under low relatedness

Author:

Walker Laura M1ORCID,Sherpa Rintsen N2,Ivaturi Sindhuri1,Brock Debra A1ORCID,Larsen Tyler J1ORCID,Walker Jason R3ORCID,Strassmann Joan E1ORCID,Queller David C1ORCID

Affiliation:

1. Department of Biology, Washington University in St. Louis , St. Louis, MO 63130 , USA

2. Department of Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, MI 48109 , USA

3. McDonnell Genome Institute, Washington University School of Medicine , St. Louis, MO 63130 , USA

Abstract

Abstract Aggregative multicellularity relies on cooperation among formerly independent cells to form a multicellular body. Previous work with Dictyostelium discoideum showed that experimental evolution under low relatedness profoundly decreased cooperation, as indicated by the loss of fruiting body formation in many clones and an increase of cheaters that contribute proportionally more to spores than to the dead stalk. Using whole-genome sequencing and variant analysis of these lines, we identified 38 single nucleotide polymorphisms in 29 genes. Each gene had 1 variant except for grlG (encoding a G protein-coupled receptor), which had 10 unique SNPs and 5 structural variants. Variants in the 5′ half of grlG—the region encoding the signal peptide and the extracellular binding domain—were significantly associated with the loss of fruiting body formation; the association was not significant in the 3′ half of the gene. These results suggest that the loss of grlG was adaptive under low relatedness and that at least the 5′ half of the gene is important for cooperation and multicellular development. This is surprising given some previous evidence that grlG encodes a folate receptor involved in predation, which occurs only during the single-celled stage. However, non-fruiting mutants showed little increase in a parallel evolution experiment where the multicellular stage was prevented from happening. This shows that non-fruiting mutants are not generally selected by any predation advantage but rather by something—likely cheating—during the multicellular stage.

Funder

National Science Foundation

McDonnell Genome Institute

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3