DNA templates with blocked long 3ʹ end single-stranded overhangs (BL3SSO) promote bona fide Cas9-stimulated homology-directed repair of long transgenes into endogenous gene loci

Author:

Bandyopadhyay Saptaparni1,Douglass Joseph1,Kapell Sebastian12,Khan Nazimuddin12,Feitosa-Suntheimer Fabiana2,Klein Jenny A34,Temple Jasmine3,Brown-Culbertson Jayce1,Tavares Alexander H12,Saeed Mohsan12,Lau Nelson C125

Affiliation:

1. Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA

2. National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA

3. Department of Biology, Brandeis University, Waltham, MA 02453, USA

4. Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA 02118, USA

5. Genome Science Institute, Boston University School of Medicine, Boston University, Boston, MA 02118, USA

Abstract

Abstract Knock-in of large transgenes by Cas9-mediated homology-directed repair (HDR) is an extremely inefficient process. Although the use of single-stranded oligonucleotides (ssODN) as an HDR donor has improved the integration of smaller transgenes, they do not support efficient insertion of large DNA sequences. In an effort to gain insights into the mechanism(s) governing the HDR-mediated integration of larger transgenes and to improve the technology, we conducted knock-in experiments targeting the human EMX1 locus and applied rigorous genomic PCR analyses in the human HEK293 cell line. This exercise revealed an unexpected molecular complication arising from the transgene HDR being initiated at the single homology arm and the subsequent genomic integration of plasmid backbone sequences. To pivot around this problem, we devised a novel PCR-constructed template containing blocked long 3' single-stranded overhangs (BL3SSO) that greatly improved the efficiency of bona fide Cas9-stimulated HDR at the EMX1 locus. We further refined BL3SSO technology and successfully used it to insert GFP transgenes into two important interferon-stimulated genes (ISGs) loci, Viperin/RSAD2, and ISG15. This study demonstrates the utility of the BL3SSO platform for inserting long DNA sequences into both constitutive and inducible endogenous loci to generate novel human cell lines for the study of important biological processes.

Funder

Leir Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3