Affiliation:
1. European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
2. Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
Abstract
Abstract
Maternal embryonic leucine zipper kinase (MELK) is frequently overexpressed in cancer, but the role of MELK in cancer is still poorly understood. MELK was shown to have roles in many cancer-associated processes including tumor growth, chemotherapy resistance, and tumor recurrence. To determine whether the frequent overexpression of MELK can be exploited in therapy, we performed a high-throughput screen using a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential when MELK is overexpressed. We identified two such genes: LAG2 and HDA3. LAG2 encodes an inhibitor of the Skp, Cullin, F-box containing (SCF) ubiquitin-ligase complex, while HDA3 encodes a subunit of the HDA1 histone deacetylase complex. We find that one of these synthetic lethal interactions is conserved in mammalian cells, as inhibition of a human homolog of HDA3 (Histone Deacetylase 4, HDAC4) is synthetically toxic in MELK overexpression cells. Altogether, our work identified a novel potential drug target for tumors that overexpress MELK.
Funder
Chinese Scholarship Council fellowship
UMCG Cancer Research Fund
CONACYT scholarship
Dutch Cancer Society
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献