Population and comparative genetics of thermotolerance divergence between yeast species

Author:

Abrams Melanie B1ORCID,Dubin Claire A1ORCID,AlZaben Faisal1,Bravo Juan2ORCID,Joubert Pierre M1,Weiss Carly V13,Brem Rachel B14ORCID

Affiliation:

1. Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA

2. Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90095, USA

3. Department of Biology, Stanford University, Palo Alto, CA 94305, USA

4. Buck Institute for Research on Aging, Novato, CA 94945, USA

Abstract

Abstract Many familiar traits in the natural world—from lions’ manes to the longevity of bristlecone pine trees—arose in the distant past, and have long since fixed in their respective species. A key challenge in evolutionary genetics is to figure out how and why species-defining traits have come to be. We used the thermotolerance growth advantage of the yeast Saccharomyces cerevisiae over its sister species Saccharomyces paradoxus as a model for addressing these questions. Analyzing loci at which the S. cerevisiae allele promotes thermotolerance, we detected robust evidence for positive selection, including amino acid divergence between the species and conservation within S. cerevisiae populations. Because such signatures were particularly strong at the chromosome segregation gene ESP1, we used this locus as a case study for focused mechanistic follow-up. Experiments revealed that, in culture at high temperature, the S. paradoxus ESP1 allele conferred a qualitative defect in biomass accumulation and cell division relative to the S. cerevisiae allele. Only genetic divergence in the ESP1 coding region mattered phenotypically, with no functional impact detectable from the promoter. Our data support a model in which an ancient ancestor of S. cerevisiae, under selection to boost viability at high temperature, acquired amino acid variants at ESP1 and many other loci, which have been constrained since then. Complex adaptations of this type hold promise as a paradigm for interspecies genetics, especially in deeply diverged traits that may have taken millions of years to evolve.

Funder

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3