The Atlantic salmon’s stress- and immune-related transcriptional responses to moderate hypoxia, an incremental temperature increase, and these challenges combined

Author:

Beemelmanns Anne1ORCID,Zanuzzo Fábio S1ORCID,Sandrelli Rebeccah M1,Rise Matthew L1,Gamperl A Kurt1ORCID

Affiliation:

1. Department of Ocean Sciences, Memorial University, St. John’s, NL A1C 5S7, Canada

Abstract

Abstract The marine environment is predicted to become warmer, and more hypoxic, and these conditions may negatively impact the health and survival of coastal fish species, including wild and farmed Atlantic salmon (Salmo salar). Thus, we examined how: (1) moderate hypoxia (∼70% air saturation) at 12°C for 3 weeks; (2) an incremental temperature increase from 12°C to 20°C (at 1°C week−1) followed by 4 weeks at 20°C; and (3) treatment “2” combined with moderate hypoxia affected transcript expression in the liver of post-smolts as compared to control conditions (normoxia, 12°C). Specifically, we assessed the expression of 45 genes related to the heat shock response, oxidative stress, apoptosis, metabolism and immunity using a high-throughput qPCR approach (Fluidigm Biomark™ HD). The expression profiles of 27 “stress”-related genes indicated that: (i) moderate hypoxia affected the expression of several stress genes at 12°C; (ii) their expression was impacted by 16°C under normoxic conditions, and this effect increased until 20°C; (iii) the effects of moderate hypoxia were not additive to those at temperatures above 16°C; and (iv) long-term (4 weeks) exposure to 20°C, with or without hypoxia, resulted in a limited acclimatory response. In contrast, the expression of 15 immune-related genes was not greatly affected until temperatures reached 20°C, and this effect was particularly evident in fish exposed to the added challenge of hypoxia. These results provide valuable information on how these two important environmental factors affect the “stress” physiology and immunology of Atlantic salmon, and we identify genes that may be useful as hypoxia and/or temperature biomarkers in salmonids and other fishes.

Funder

Mitigating the Impact of Climate-Related Challenges on Salmon Aquaculture

Atlantic Canada Opportunities Agency

Innovative PEI and The Huntsman Marine Science Centre

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3