Whole-genome sequencing of multiple isolates of Puccinia triticina reveals asexual lineages evolving by recurrent mutations

Author:

Fellers John P1ORCID,Sakthikumar Sharadha2,He Fei3ORCID,McRell Katie3,Bakkeren Guus4ORCID,Cuomo Christina A2ORCID,Kolmer James A5

Affiliation:

1. USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA

2. Broad Institute and MIT, Cambridge, MA 02142, USA

3. Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA

4. Agriculture and Agri Food Canada, Summerland, BC V0H1Z0, USA

5. USDA-ARS, Cereal Disease Laboratory, St. Paul, MN 55108, USA

Abstract

Abstract The wheat leaf rust fungus, Puccinia triticina Erikss., is a worldwide pathogen of tetraploid durum and hexaploid wheat. Many races of P. triticina differ for virulence to specific leaf rust resistance genes and are found in most wheat-growing regions of the world. Wheat cultivars with effective leaf rust resistance exert selection pressure on P. triticina populations for virulent race types. The objectives of this study were to examine whole-genome sequence data of 121 P. triticina isolates and to gain insight into race evolution. The collection included isolates comprising of many different race phenotypes collected worldwide from common and durum wheat. One isolate from wild wheat relative Aegilops speltoides and two from Ae. cylindrica were also included for comparison. Based on 121,907 informative variants identified relative to the reference Race 1-1 genome, isolates were clustered into 11 major lineages with 100% bootstrap support. The isolates were also grouped based on variation in 1311 predicted secreted protein genes. In gene-coding regions, all groups had high ratios of nonsynonymous to synonymous mutations and nonsense to readthrough mutations. Grouping of isolates based on two main variation principle components for either genome-wide variation or variation just within the secreted protein genes, indicated similar groupings. Variants were distributed across the entire genome, not just within the secreted protein genes. Our results suggest that recurrent mutation and selection play a major role in differentiation within the clonal lineages.

Funder

USDA CSREE

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3