Genetic bases of resistance to the rice hoja blanca disease deciphered by a quantitative trait locus approach

Author:

Silva Alexander1,Montoya María Elker2,Quintero Constanza1,Cuasquer Juan1,Tohme Joe1,Graterol Eduardo2,Cruz Maribel2,Lorieux Mathias13

Affiliation:

1. Agrobiodiversity Unit, Alliance Bioversity-CIAT , Palmira, Valle del Cauca CP 763537 , Colombia

2. FLAR-The Latin American Fund for Irrigated Rice , Valle del Cauca CP 763537 , Colombia

3. DIADE, University of Montpellier, Cirad, IRD. IRD Occitanie, 911 Ave Agropolis, 34394 Montpellier Cedex 5 , France

Abstract

Abstract Rice hoja blanca (RHB) is one of the most serious diseases in rice-growing areas in tropical Americas. Its causal agent is RHB virus (RHBV), transmitted by the planthopper Tagosodes orizicolus Müir. Genetic resistance is the most effective and environment-friendly way of controlling the disease. So far, only 1 major quantitative trait locus (QTL) of Oryza sativa ssp. japonica origin, qHBV4.1, that alters the incidence of the virus symptoms in 2 Colombian cultivars has been reported. This resistance has already started to be broken, stressing the urgent need for diversifying the resistance sources. In the present study, we performed a search for new QTLs of O. sativa indica origin associated with RHB resistance. We used 4 F2:3-segregating populations derived from indica-resistant varieties crossed with a highly susceptible japonica pivot parent. Besides the standard method for measuring disease incidence, we developed a new method based on computer-assisted image processing to determine the affected leaf area (ALA) as a measure of symptom severity. Based on the disease severity and incidence scores in the F3 families under greenhouse conditions and SNP genotyping of the F2 individuals, we identified 4 new indica QTLs for RHB resistance on rice chromosomes 4, 6, and 11, namely, qHBV4.2WAS208, qHBV6.1PTB25, qHBV11.1, and qHBV11.2, respectively. We also confirmed the wide-range action of qHBV4.1. Among the 5 QTLs, qHBV4.1 and qHBV11.1 had the largest effects on incidence and severity, respectively. These results provide a more complete understanding of the genetic bases of RHBV resistance in the cultivated rice gene pool and can be used to develop marker-aided breeding strategies to improve RHB resistance. The power of joint- and meta-analyses allowed precise mapping and candidate gene identification, providing the basis for positional cloning of the 2 major QTLs qHBV4.1 and qHBV11.1.

Funder

The Latin American Fund for Irrigated Rice

RICE CGIAR Research Program

OMICAS program

World Bank

Colombian Ministry of Science, Technology and Innovation

ICETEX

Colombian Ministry of Education

Colombian Ministry of Industry and Tourism

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3