Affiliation:
1. Agrobiodiversity Unit, Alliance Bioversity-CIAT , Palmira, Valle del Cauca CP 763537 , Colombia
2. FLAR-The Latin American Fund for Irrigated Rice , Valle del Cauca CP 763537 , Colombia
3. DIADE, University of Montpellier, Cirad, IRD. IRD Occitanie, 911 Ave Agropolis, 34394 Montpellier Cedex 5 , France
Abstract
Abstract
Rice hoja blanca (RHB) is one of the most serious diseases in rice-growing areas in tropical Americas. Its causal agent is RHB virus (RHBV), transmitted by the planthopper Tagosodes orizicolus Müir. Genetic resistance is the most effective and environment-friendly way of controlling the disease. So far, only 1 major quantitative trait locus (QTL) of Oryza sativa ssp. japonica origin, qHBV4.1, that alters the incidence of the virus symptoms in 2 Colombian cultivars has been reported. This resistance has already started to be broken, stressing the urgent need for diversifying the resistance sources. In the present study, we performed a search for new QTLs of O. sativa indica origin associated with RHB resistance. We used 4 F2:3-segregating populations derived from indica-resistant varieties crossed with a highly susceptible japonica pivot parent. Besides the standard method for measuring disease incidence, we developed a new method based on computer-assisted image processing to determine the affected leaf area (ALA) as a measure of symptom severity. Based on the disease severity and incidence scores in the F3 families under greenhouse conditions and SNP genotyping of the F2 individuals, we identified 4 new indica QTLs for RHB resistance on rice chromosomes 4, 6, and 11, namely, qHBV4.2WAS208, qHBV6.1PTB25, qHBV11.1, and qHBV11.2, respectively. We also confirmed the wide-range action of qHBV4.1. Among the 5 QTLs, qHBV4.1 and qHBV11.1 had the largest effects on incidence and severity, respectively. These results provide a more complete understanding of the genetic bases of RHBV resistance in the cultivated rice gene pool and can be used to develop marker-aided breeding strategies to improve RHB resistance. The power of joint- and meta-analyses allowed precise mapping and candidate gene identification, providing the basis for positional cloning of the 2 major QTLs qHBV4.1 and qHBV11.1.
Funder
The Latin American Fund for Irrigated Rice
RICE CGIAR Research Program
OMICAS program
World Bank
Colombian Ministry of Science, Technology and Innovation
ICETEX
Colombian Ministry of Education
Colombian Ministry of Industry and Tourism
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献