The effect of mutation subtypes on the allele frequency spectrum and population genetics inference

Author:

Liao Kevin1,Carlson Jedidiah23,Zöllner Sebastian14

Affiliation:

1. Department of Biostatistics, University of Michigan , Ann Arbor, MI 48109 , USA

2. Department of Integrative Biology, University of Texas at Austin , Austin, TX 78712 , USA

3. Department of Population Health, University of Texas at Austin , Austin, TX 78712 , USA

4. Department of Psychiatry, University of Michigan , Ann Arbor, MI 48109 , USA

Abstract

AbstractPopulation genetics has adapted as technological advances in next-generation sequencing have resulted in an exponential increase of genetic data. A common approach to efficiently analyze genetic variation present in large sequencing data is through the allele frequency spectrum, defined as the distribution of allele frequencies in a sample. While the frequency spectrum serves to summarize patterns of genetic variation, it implicitly assumes mutation types (A→C vs C→T) as interchangeable. However, mutations of different types arise and spread due to spatial and temporal variation in forces such as mutation rate and biased gene conversion that result in heterogeneity in the distribution of allele frequencies across sites. In this work, we explore the impact of this simplification on multiple aspects of population genetic modeling. As a site’s mutation rate is strongly affected by flanking nucleotides, we defined a mutation subtype by the base pair change and adjacent nucleotides (e.g. AAA→ATA) and systematically assessed the heterogeneity in the frequency spectrum across 96 distinct 3-mer mutation subtypes using n = 3556 whole-genome sequenced individuals of European ancestry. We observed substantial variation across the subtype-specific frequency spectra, with some of the variation being influenced by molecular factors previously identified for single base mutation types. Estimates of model parameters from demographic inference performed for each mutation subtype’s AFS individually varied drastically across the 96 subtypes. In local patterns of variation, a combination of regional subtype composition and local genomic factors shaped the regional frequency spectrum across genomic regions. Our results illustrate how treating variants in large sequencing samples as interchangeable may confound population genetic frameworks and encourages us to consider the unique evolutionary mechanisms of analyzed polymorphisms.

Funder

National Institutes of Health

NIH/National Human Genome Research Institute Genome Science Training Program

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3