The genome of Przewalski’s horse (Equus ferus przewalskii)

Author:

Flack Nicole1ORCID,Hughes Lauren2,Cassens Jacob3,Enriquez Maya4,Gebeyehu Samrawit5ORCID,Alshagawi Mohammed4,Hatfield Jason4ORCID,Kauffman Anna4,Brown Baylor4,Klaeui Caitlin4ORCID,Mabrouk Islam F4,Walls Carrie5,Yeater Taylor4,Rivas Anne6,Faulk Christopher5ORCID

Affiliation:

1. Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN 55108 , USA

2. Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN 55108 , USA

3. Division of Environmental Health Sciences, School of Public Health, University of Minnesota , Minneapolis, MN 55455 , USA

4. ANSC 8520 Students, University of Minnesota , Minneapolis, MN 55455 , USA

5. Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota , Saint Paul, MN 55108 , USA

6. Minnesota Zoo , Apple Valley, MN 55124 , USA

Abstract

Abstract The Przewalski’s horse (Equus ferus przewalskii) is an endangered equid native to the steppes of central Asia. After becoming extinct in the wild multiple conservation efforts convened to preserve the species, including captive breeding programs, reintroduction and monitoring systems, protected lands, and cloning. Availability of a highly contiguous reference genome is essential to support these continued efforts. We used Oxford Nanopore sequencing to produce a scaffold-level 2.5 Gb nuclear assembly and 16,002 bp mitogenome from a captive Przewalski’s mare. All assembly drafts were generated from 111 Gb of sequence from a single PromethION R10.4.1 flow cell. The mitogenome contained 37 genes in the standard mammalian configuration and was 99.63% identical to the domestic horse (Equus caballus). The nuclear assembly, EquPr2, contained 2,146 scaffolds with an N50 of 85.1 Mb, 43X mean depth, and BUSCO quality score of 98.92%. EquPr2 successfully improves upon the existing Przewalski’s horse reference genome (Burgud), with 25-fold fewer scaffolds, a 166-fold larger N50, and phased pseudohaplotypes. Modified basecalls revealed 79.5% DNA methylation and 2.1% hydroxymethylation globally. Allele-specific methylation analysis between pseudohaplotypes revealed 226 differentially methylated regions in known imprinted genes and loci not previously reported as imprinted. The heterozygosity rate of 0.165% matches previous estimates for the species and compares favorably to other endangered animals. This improved Przewalski’s horse assembly will serve as a valuable resource for conservation efforts and comparative genomics investigations.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3