Affiliation:
1. Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
2. Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
Abstract
Abstract
Baker’s yeast contains a large number of duplicated genes; some function redundantly, whereas others have more specialized roles. We used the MLH family of DNA mismatch repair (MMR) proteins as a model to better understand the steps that lead to gene specialization following a gene duplication event. We focused on two highly conserved yeast MLH proteins, Pms1 and Mlh3, with Pms1 having a major role in the repair of misincorporation events during DNA replication and Mlh3 acting to resolve recombination intermediates in meiosis to form crossovers. The baker’s yeast Mlh3 and Pms1 proteins are significantly diverged (19% overall identity), suggesting that an extensive number of evolutionary steps, some major, others involving subtle refinements, took place to diversify the MLH proteins. Using phylogenetic and molecular approaches, we provide evidence that all three domains (N-terminal ATP binding, linker, C-terminal endonuclease/MLH interaction) in the MLH protein family are critical for conferring pathway specificity. Importantly, mlh3 alleles in the ATP binding and endonuclease domains improved MMR functions in strains lacking the Pms1 protein and did not disrupt Mlh3 meiotic functions. This ability for mlh3 alleles to complement the loss of Pms1 suggests that an ancestral Pms1/Mlh3 protein was capable of performing both MMR and crossover functions. Our strategy for analyzing MLH pathway specificity provides an approach to understand how paralogs have evolved to support distinct cellular processes.
Funder
National Institute of General Medical Sciences
National Institutes of Health
Cornell McNair Scholars Program
Frank L. and Lynnet Douglas Fellowship
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献