Comparative genome analysis of the freshwater fungus Filosporella fistucella indicates potential for plant-litter degradation at cold temperatures

Author:

Vasconcelos Rissi Daniel1,Ijaz Maham1,Baschien Christiane1

Affiliation:

1. Leibniz - Institute DSMZ, German Collection of Microorganisms and Cell Cultures , 38124 Braunschweig , Germany

Abstract

Abstract Freshwater fungi play an important role in the decomposition of organic matter of leaf litter in rivers and streams. They also possess the necessary mechanisms to endure lower temperatures caused by habitat and weather variations. This includes the production of cold-active enzymes and antifreeze proteins. To better understand the physiological activities of freshwater fungi in their natural environment, different methods are being applied, and genome sequencing is one in the spotlight. In our study, we sequenced the first genome of the freshwater fungus Filosporella fistucella (45.7 Mb) and compared the genome with the evolutionary close-related species Tricladium varicosporioides (48.2 Mb). The genomes were annotated using the carbohydrate-active enzyme database where we then filtered for leaf-litter degradation-related enzymes (cellulase, hemicellulase, laccase, pectinase, cutinase, amylase, xylanase, and xyloglucanase). Those enzymes were analyzed for antifreeze properties using a machine-learning approach. We discovered that F. fistucella has more enzymes to participate in the breakdown of sugar, leaf, and wood than T. varicosporioides (855 and 719, respectively). Filosporella fistucella shows a larger set of enzymes capable of resisting cold temperatures than T. varicosporioides (75 and 66, respectively). Our findings indicate that in comparison with T. varicosporioides, F. fistucella has a greater capacity for aquatic growth, adaptability to freshwater environments, and resistance to low temperatures.

Funder

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3