Affiliation:
1. Institute of Plant and Microbial Biology, Academia Sinica , Taipei 115201 , Taiwan
2. Genenet Technology (UK) Limited , 128 City Road, London EC1V 2NX , UK
Abstract
Abstract
Coilin is a scaffold protein essential for the structure of Cajal bodies, which are nucleolar-associated, nonmembranous organelles that coordinate the assembly of nuclear ribonucleoproteins (RNPs) including spliceosomal snRNPs. To study coilin function in plants, we conducted a genetic suppressor screen using a coilin (coi1) mutant in Arabidopsis thaliana and performed an immunoprecipitation-mass spectrometry analysis on coilin protein. The coi1 mutations modify alternative splicing of a GFP reporter gene, resulting in a hyper-GFP phenotype in young coi1 seedlings relative to the intermediate wild-type level. As shown here, this hyper-GFP phenotype is extinguished in older coi1 seedlings by posttranscriptional gene silencing triggered by siRNAs derived from aberrant splice variants of GFP pre-mRNA. In the coi1 suppressor screen, we identified suppressor mutations in WRAP53, a putative coilin–interacting protein; SMU2, a predicted splicing factor; and ZCH1, an incompletely characterized zinc finger protein. These suppressor mutations return the hyper-GFP fluorescence of young coi1 seedlings to the intermediate wild-type level. Additionally, coi1 zch1 mutants display more extensive GFP silencing and elevated levels of GFP siRNAs, suggesting the involvement of wild-type ZCH1 in siRNA biogenesis or stability. The immunoprecipitation-mass spectrometry analysis reinforced the roles of coilin in pre-mRNA splicing, nucleolar chromatin structure, and rRNA processing. The participation of coilin in these processes, at least some of which incorporate small RNAs, supports the hypothesis that coilin provides a chaperone for small RNA trafficking. Our study demonstrates the usefulness of the GFP splicing reporter for investigating alternative splicing, ribosome biogenesis, and siRNA-mediated silencing in the context of coilin function.
Funder
Academia Sinica
Taiwanese Ministry of Science and Technology
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology