Affiliation:
1. Department of Agronomy and Plant Genetics, University of Minnesota , 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108 , USA
Abstract
Abstract
Intermediate wheatgrass (IWG) is a perennial grass that produces nutritious grain while offering substantial ecosystem services. Commercial varieties of this crop are mostly synthetic panmictic populations that are developed by intermating a few selected individuals. As development and generation advancement of these synthetic populations is a multiyear process, earlier synthetic generations are tested by the breeders and subsequent generations are released to the growers. A comparison of generations within IWG synthetic cultivars is currently lacking. In this study, we used simulation models and genomic prediction to analyze population differences and trends of genetic variance in 4 synthetic generations of MN-Clearwater, a commercial cultivar released by the University of Minnesota. Little to no differences were observed among the 4 generations for population genetic, genetic kinship, and genome-wide marker relationships measured via linkage disequilibrium. A reduction in genetic variance was observed when 7 parents were used to generate synthetic populations while using 20 led to the best possible outcome in determining population variance. Genomic prediction of plant height, free threshing ability, seed mass, and grain yield among the 4 synthetic generations showed a few significant differences among the generations, yet the differences in values were negligible. Based on these observations, we make 2 major conclusions: (1) the earlier and latter synthetic generations of IWG are mostly similar to each other with minimal differences and (2) using 20 genotypes to create synthetic populations is recommended to sustain ample genetic variance and trait expression among all synthetic generations.
Funder
University of Minnesota
Foundation for Food & Agriculture Research
AFRI Sustainable Agricultural Systems Coordinated Agricultural Project
Publisher
Oxford University Press (OUP)