Photosystem II-based biomimetic assembly for enhanced photosynthesis

Author:

Xuan Mingjun1,Li Junbai12

Affiliation:

1. Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract Photosystem II (PSII) is a fascinating photosynthesis-involved enzyme, participating in sunlight-harvest, water splitting, oxygen release, and proton/electron generation and transfer. Scientists have been inspired to couple PSII with synthetic hierarchical structures via biomimetic assembly, facilitating attainment of natural photosynthesis processes, such as photocatalytic water splitting, electron transfer and ATP synthesis, in vivo. In the past decade, there has been significant progress in PSII-based biomimetic systems, such as artificial chloroplasts and photoelectrochemical cells. The biomimetic assembly approach helps PSII gather functions and properties from synthetic materials, resulting in a complex with partly natural and partly synthetic components. PSII-based biomimetic assembly offers opportunities to forward semi-biohybrid research and synchronously inspire optimization of artificial light-harvest micro/nanodevices. This review summarizes recent studies on how PSII combines with artificial structures via molecular assembly and highlights PSII-based semi-natural biosystems which arise from synthetic parts and natural components. Moreover, we discuss the challenges and remaining problems for PSII-based systems and the outlook for their development and applications. We believe this topic provides inspiration for rational designs to develop biomimetic PSII-based semi-natural devices and further reveal the secrets of energy conversion within natural photosynthesis from the molecular level.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3