Atomically precise metal chalcogenide supertetrahedral clusters: frameworks to molecules, and structure to function

Author:

Zhang Jiaxu1,Feng Pingyun2,Bu Xianhui3,Wu Tao41

Affiliation:

1. College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China

2. Department of Chemistry, University of California, Riverside, CA 92521, USA

3. Department of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA

4. College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China

Abstract

ABSTRACT Metal chalcogenide supertetrahedral clusters (MCSCs) are of significance for developing crystalline porous framework materials and atomically precise cluster chemistry. Early research interest focused on the synthetic and structural chemistry of MCSC-based porous semiconductor materials with different cluster sizes/compositions and their applications in adsorption-based separation and optoelectronics. More recently, focus has shifted to the cluster chemistry of MCSCs to establish atomically precise structure–composition–property relationships, which are critical for regulating the properties and expanding the applications of MCSCs. Importantly, MCSCs are similar to II–VI or I–III–VI semiconductor nanocrystals (also called quantum dots, QDs) but avoid their inherent size polydispersity and structural ambiguity. Thus, discrete MCSCs, especially those that are solution-processable, could provide models for understanding various issues that cannot be easily clarified using QDs. This review covers three decades of efforts on MCSCs, including advancements in MCSC-based open frameworks (reticular chemistry), the precise structure–property relationships of MCSCs (cluster chemistry), and the functionalization and applications of MCSC-based microcrystals. An outlook on remaining problems to be solved and future trends is also presented.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference121 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3