Evolutionary basis of high-frequency hearing in the cochleae of echolocators revealed by comparative genomics

Author:

Wang Hui12,Zhao Hanbo1,Sun Keping1,Huang Xiaobin3,Jin Longru1,Feng Jiang12

Affiliation:

1. Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China

2. College of Life Science, Jilin Agricultural University, Changchun, China

3. Vector Laboratory for Zoonosis Control and Prevention, Dali University, Dali, China

Abstract

Abstract High-frequency hearing is important for the survival of both echolocating bats and whales, but our understanding of its genetic basis is scattered and segmented. In this study, we combined RNA-Seq and comparative genomic analyses to obtain insights into the comprehensive gene expression profile of the cochlea and the adaptive evolution of hearing-related genes. A total of 144 genes were found to have been under positive selection in various species of echolocating bats and toothed whales, 34 of which were identified to be related to hearing behavior or auditory processes. Subsequently, multiple physiological processes associated with those genes were found to have adaptively evolved in echolocating bats and toothed whales, including cochlear bony development, antioxidant activity, ion balance, and homeostatic processes, along with signal transduction. In addition, abundant convergent/parallel genes and sites were detected between different pairs of echolocator species; however, no specific hearing-related physiological pathways were enriched by them and almost all of the convergent/parallel signals were selectively neutral, as previously reported. Notably, two adaptive parallel evolved sites in TECPR2 were shown to have been under positive selection, indicating their functional importance for the evolution of echolocation and high-frequency hearing in laryngeal echolocating bats. This study deepens our understanding of the genetic bases underlying high-frequency hearing in the cochlea of echolocating bats and toothed whales.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3