Histone deacetylase 9 interacts with SiHAT3.1 and SiHDA19 to repress dehydration responses through H3K9 deacetylation in foxtail millet

Author:

Kumar Verandra1ORCID,Singh Babita2,Kumar Singh Roshan1,Sharma Namisha1,Muthamilarasan Mehanathan1,Sawant Samir V2ORCID,Prasad Manoj13ORCID

Affiliation:

1. National Institute of Plant Genome Research , Aruna Asaf Ali Marg, New Delhi 110067, Delhi , India

2. Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow 226001, Uttar Pradesh , India

3. Department of Plant Sciences, School of Life Sciences, University of Hyderabad , Hyderabad 500046, Telangana , India

Abstract

Abstract Climate change inflicts several stresses on plants, of which dehydration stress severely affects growth and productivity. C4 plants possess better adaptability to dehydration stress; however, the role of epigenetic modifications underlying this trait is unclear. In particular, the molecular links between histone modifiers and their regulation remain elusive. In this study, genome-wide H3K9 acetylation (H3K9ac) enrichment using ChIP-sequencing was performed in two foxtail millet cultivars with contrasting dehydration tolerances (IC403579, cv. IC4—tolerant, and IC480117, cv. IC41—sensitive). It revealed that a histone deacetylase, SiHDA9, was significantly up-regulated in the sensitive cultivar. Further characterization indicated that SiHDA9 interacts with SiHAT3.1 and SiHDA19 to form a repressor complex. SiHDA9 might be recruited through the SiHAT3.1 recognition sequence onto the upstream of dehydration-responsive genes to decrease H3K9 acetylation levels. The silencing of SiHDA9 resulted in the up-regulation of crucial genes, namely, SiRAB18, SiRAP2.4, SiP5CS2, SiRD22, SiPIP1;4, and SiLHCB2.3, which imparted dehydration tolerance in the sensitive cultivar (IC41). Overall, the study provides mechanistic insights into SiHDA9-mediated regulation of dehydration stress response in foxtail millet.

Funder

Department of Science and Technology, Government of India

National Post-Doctoral Fellowship

J.C. Bose National Fellowship Grant, Department of Science and Technology, Government of India

Science and Engineering Research Board, Government of India and Core Grant of National Institute of Plant Genome Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3