RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat

Author:

Zhang Jialing12,Li Chaonan1ORCID,Li Long1ORCID,Xi Yajun2,Wang Jingyi1ORCID,Mao Xinguo1ORCID,Jing Ruilian1ORCID

Affiliation:

1. National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences , Beijing 100081 , China

2. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University , Yangling, 712100, Shaanxi , China

Abstract

Abstract E3 ubiquitin ligase genes play important roles in the regulation of plant development. They have been well studied in plants, but have not been sufficiently investigated in wheat. Here, we identified a highly expressed RING finger E3 ubiquitin ligase gene TaAIRP2-1B (ABA-insensitive RING protein 2) in wheat spike. Sequence polymorphism and association analysis showed that TaAIRP2-1B is significantly associated with spike length under various conditions. The genotype with haplotype Hap-1B-1 of TaAIRP2-1B has a longer spike than that of Hap-1B-2, and was positively selected in the process of wheat breeding in China. Moreover, the TaAIRP2-1B-overexpressing rice lines have longer panicles compared with wild-type plants. The expression levels of TaAIRP2-1B in Hap-1B-1 accessions were higher than in Hap-1B-2 accessions. Further study revealed that the expression of TaAIRP2-1B was negatively regulated by TaERF3 (ethylene-responsive factor 3) via binding to the Hap-1B-2 promoter, but not via binding of Hap-1B-1. Additionally, several candidate genes interacting with TaAIRP2-1B were obtained by screening the cDNA library of wheat in yeast cells. It was found that TaAIRP2-1B interacted with TaHIPP3 (heavy metal-associated isoprenylated protein 3) and promoted TaHIPP3 degradation. Our study demonstrates that TaAIRP2-1B controls spike length, and the haplotype Hap-1B-1 of TaAIRP2-1B is a favorable natural variation for spike length enhancement in wheat. This work also provides genetic resources and functional markers for wheat molecular breeding.

Funder

National Key R&D Program of China

Agricultural Science and Technology Innovation Program

China Agriculture Research System

MOF

MARA

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3