The translocase of the inner mitochondrial membrane 22-2 is required for mitochondrial membrane function during Arabidopsis seed development

Author:

Zhang Yuqin1,Hu Yuanyuan1,Wang Zhiqin1,Lin Xiaodi1,Li Zihui1,Ren Yafang1,Zhao Jie1ORCID

Affiliation:

1. State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University , Wuhan 430072 , China

Abstract

Abstract The carrier translocase (also known as translocase of the inner membrane 22; TIM22 complex) is an important component of the mitochondrial protein import apparatus. However, the biological functions of AtTIM22-2 in Arabidopsis remain poorly defined. Here, we report studies on two tim22-2 mutants that exhibit defects in embryo and endosperm development, leading to seed abortion. AtTIM22-2, which was localized in mitochondria, was widely expressed in embryos and in various seedling organs. Loss of AtTIM22-2 function resulted in irregular mitochondrial cristae, decreased respiratory activity, and a lower membrane potential, together with changes in gene expression and enzyme activity related to reactive oxygen species (ROS) metabolism, leading to increased accumulation of ROS in the embryo. The levels of transcripts encoding mitochondrial protein import components were also altered in the tim22-2 mutants. Furthermore, mass spectrometry, bimolecular fluorescence complementation and co-immunoprecipitation assays revealed that AtTIM22-2 interacted with AtTIM23-2, AtB14.7 (a member of Arabidopsis OEP16 family encoded by At2G42210), and AT5G27395 (mitochondrial inner membrane translocase complex, subunit TIM44-related protein). Taken together, these results demonstrate that AtTIM22-2 is essential for maintaining mitochondrial membrane functions during seed development. These findings lay the foundations for a new model of the composition and functions of the TIM22 complex in higher plants.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3