General Regulatory Factor7 regulates innate immune signalling to enhance Verticillium wilt resistance in cotton

Author:

Liu Fujie1ORCID,Cai Sheng12ORCID,Wu Peng3,Dai Lingjun1ORCID,Li Xinyi3,Ai Nijiang4,Feng Guoli4,Wang Ningshan4,Zhou Baoliang1ORCID

Affiliation:

1. National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University , Nanjing 210095, Jiangsu , People’s Republic of China

2. Nanjing Forestry University , 159 Longpan Road, Nanjing 210095, Jiangsu , People’s Republic of China

3. College of Plant Science, Huazhong Agricultural University , Wuhan 430070, Hubei , People’s Republic of China

4. Shihezi Agricultural Science Research Institute , Shihezi 832000, Xinjiang , People’s Republic of China

Abstract

Abstract Sessile growing plants are always vulnerable to microbial pathogen attacks throughout their lives. To fend off pathogen invasion, plants have evolved a sophisticated innate immune system that consists of cell surface receptors and intracellular receptors. Somatic embryogenesis receptor kinases (SERKs) belong to a small group of leucine-rich repeat receptor-like kinases (LRR-RLKs) that function as co-receptors regulating diverse physiological processes. GENRAL REGULATORY FACTOR (GRF) proteins play an important role in physiological signalling transduction. However, the function of GRF proteins in plant innate immune signalling remains elusive. Here, we identified a GRF gene, GauGRF7, that is expressed both constitutively and in response to fungal pathogen infection. Intriguingly, silencing of GRF7 compromised plant innate immunity, resulting in susceptibility to Verticillium dahliae infection. Both transgenic GauGRF7 cotton and transgenic GauGRF7 Arabidopsis lines enhanced the innate immune response to V. dahliae infection, leading to high expression of two helper NLRs (hNLR) genes (ADR1 and NRG1) and pathogenesis-related genes, and increased ROS production and salicylic acid level. Moreover, GauGRF7 interacted with GhSERK1, which positively regulated GRF7-mediated innate immune response in cotton and Arabidopsis. Our findings revealed the molecular mechanism of the GRF protein in plant immune signaling and offer potential opportunities for improving plant resistance to V. dahliae infection.

Funder

National Natural Science Foundation of China

Key Scientific and Technological Projects of the Eighth Division of XPCC

Key Scientific and Technological Project of XPCC

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3