Unraveling plant–microbe interactions: can integrated omics approaches offer concrete answers?

Author:

Kimotho Roy Njoroge12ORCID,Maina Solomon3

Affiliation:

1. Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Shijiazhuang 050021 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

3. Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries , Menangle, New South Wales 2568 , Australia

Abstract

Abstract Advances in high throughput omics techniques provide avenues to decipher plant microbiomes. However, there is limited information on how integrated informatics can help provide deeper insights into plant–microbe interactions in a concerted way. Integrating multi-omics datasets can transform our understanding of the plant microbiome from unspecified genetic influences on interacting species to specific gene-by-gene interactions. Here, we highlight recent progress and emerging strategies in crop microbiome omics research and review key aspects of how the integration of host and microbial omics-based datasets can be used to provide a comprehensive outline of complex crop–microbe interactions. We describe how these technological advances have helped unravel crucial plant and microbial genes and pathways that control beneficial, pathogenic, and commensal plant–microbe interactions. We identify crucial knowledge gaps and synthesize current limitations in our understanding of crop microbiome omics approaches. We highlight recent studies in which multi-omics-based approaches have led to improved models of crop microbial community structure and function. Finally, we recommend holistic approaches in integrating host and microbial omics datasets to achieve precision and efficiency in data analysis, which is crucial for biotic and abiotic stress control and in understanding the contribution of the microbiota in shaping plant fitness.

Funder

Chinese Government Scholarship

University of Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3