Population divergence in heat and drought responses of a coastal plant: from metabolic phenotypes to plant morphology and growth

Author:

Schrieber Karin1,Glüsing Svea2,Peters Lisa13,Eichert Beke14,Althoff Merle1,Schwarz Karin2ORCID,Erfmeier Alexandra1,Demetrowitsch Tobias2ORCID

Affiliation:

1. Faculty of Mathematics and Natural Sciences, Institute for Ecosystem Research, Division of Geobotany, Kiel University , D-24118 Kiel , Germany

2. Faculty of Agricultural and Nutritional Sciences, Institute for Human Nutrition and Food Science, Division of Food Technology, Kiel University , D-24118 Kiel , Germany

3. Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences , D-06406 Bernburg (Saale) , Germany

4. Institute of Plant Science and Microbiology, University of Hamburg , D-20146 Hamburg , Germany

Abstract

Abstract Studying intraspecific variation in multistress responses is central for predicting and managing the population dynamics of wild plant species under rapid global change. Yet, it remains a challenging goal in this field to integrate knowledge on the complex biochemical underpinnings for the targeted ‘non-model’ species. Here, we studied divergence in combined drought and heat responses among Northern and Southern European populations of the dune plant Cakile maritima, by combining comprehensive plant phenotyping with metabolic profiling via FT-ICR-MS and UPLC-TQ-MS/MS. We observed pronounced constitutive divergence in growth phenology, leaf functional traits, and defence chemistry (glucosinolates and alkaloids) among population origins. Most importantly, the magnitude of growth reduction under drought was partly weaker in southern plants and associated with divergence in plastic growth responses (leaf abscission) and the modulation of primary and specialized metabolites with known central functions not only in plant abiotic but also in biotic stress responses. Our study indicates that divergent selection has shaped the constitutive and drought-/heat-induced expression of numerous morphological and biochemical functional traits to mediate higher abiotic stress resistance in southern Cakile populations, and highlights that metabolomics can be a powerful tool to explore the underlying mechanisms of local adaptation in ‘non-model’ species.

Funder

DFG

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3