Environmental context of phenotypic plasticity in flowering time in sorghum and rice

Author:

Guo Tingting12ORCID,Wei Jialu3ORCID,Li Xianran4ORCID,Yu Jianming3ORCID

Affiliation:

1. Hubei Hongshan Laboratory , Wuhan, Hubei , China

2. College of Plant Science and Technology, Huazhong Agricultural University , Wuhan, Hubei , China

3. Department of Agronomy, Iowa State University , Ames, IA , USA

4. USDA, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit , Pullman, WA , USA

Abstract

Abstract Phenotypic plasticity is an important topic in biology and evolution. However, how to generate broadly applicable insights from individual studies remains a challenge. Here, with flowering time observed from a large geographical region for sorghum and rice genetic populations, we examine the consistency of parameter estimation for reaction norms of genotypes across different subsets of environments and searched for potential strategies to inform the study design. Both sample size and environmental mean range of the subset affected the consistency. The subset with either a large range of environmental mean or a large sample size resulted in genetic parameters consistent with the overall pattern. Furthermore, high accuracy through genomic prediction was obtained for reaction norm parameters of untested genotypes using models built from tested genotypes under the subsets of environments with either a large range or a large sample size. With 1428 and 1674 simulated settings, our analyses suggested that the distribution of environmental index values of a site should be considered in designing experiments. Overall, we showed that environmental context was critical, and considerations should be given to better cover the intended range of the environmental variable. Our findings have implications for the genetic architecture of complex traits, plant–environment interaction, and climate adaptation.

Funder

Huazhong Agricultural University Scientific Research Foundation

Hainan Yazhou Bay Seed Lab

Agriculture and Food Research Initiative competitive

Hatch project

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3