Photoperiod sensitivity of Ppd-H1 and ppd-H1 isogenic lines of a spring barley cultivar: exploring extreme photoperiods

Author:

Parrado Jorge D1ORCID,Savin Roxana1ORCID,Slafer Gustavo A12ORCID

Affiliation:

1. Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center , Av. Rovira Roure 191, 25198 Lleida , Spain

2. ICREA, Catalonian Institution for Research and Advanced Studies , Spain

Abstract

Abstract Barley is a long-day plant with a major gene (PPD-H1) that determines its photoperiod sensitivity. Under long days (i.e. 16 h), flowering occurs earlier in sensitive (Ppd-H1) than in insensitive (ppd-H1) genotypes, while under short days (i.e. 12 h) both flower late and more or less simultaneously. We hypothesized that (i) the sensitive line should flower later than the insensitive line under very short days (<12 h), and (ii) both the sensitive and insensitive lines should have similar phenology under very long days (>18 h). When comparing a pair of spring isogenic lines for sensitive and insensitive PPD-H1 alleles (introgressing the PPD-H1 allele into the barley cultivar ‘WI4441’), we found responses fully in line with expectations for the commonly explored range from 12 to 16–18 h. When the responses were extended to very short days, sensitivity increased noticeably, and time to flowering of the sensitive line was longer than that of the insensitive one. Under very long days, the sensitive line did not respond further (it seemed to have reached its minimum time to flowering under a 16 h period), while the insensitive line continued shortening its time to flowering until c. 21 h. Consequently, both lines flowered similarly under very long days, which opens opportunities to easily test for differences in earliness per se, as in wheat.

Funder

State Research Agency of Spain

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3