Leaf rolling precedes stomatal closure in rice (Oryza sativa) under drought conditions

Author:

Wang Xiaoxiao1ORCID,Huang Jianliang1ORCID,Peng Shaobing1ORCID,Xiong Dongliang1ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University , Wuhan, Hubei 430070 , China

Abstract

Abstract Leaf rolling is a physiological response to drought that may help to reduce water loss, but its significance as a contribution to drought tolerance is uncertain. We scored the leaf rolling of four rice genotypes along an experimental drought gradient using an improved cryo-microscopy method. Leaf water potential (Ψleaf), gas exchange, chlorophyll fluorescence, leaf hydraulic conductance, rehydration capacity, and the bulk turgor loss point were also analysed. During the drought process, stomatal conductance declined sharply to reduce water loss, and leaves rolled up before the stomata completely closed. The leaf water loss rate of rolled leaves was significantly reduced compared with artificially flattened leaves. The Ψleaf threshold of initial leaf rolling ranged from −1.95 to −1.04 MPa across genotypes. When a leaf rolled so that the leaf edges were touching, photosynthetic rate and stomatal conductance declined more than 80%. Across genotypes, leaf hydraulic conductance declined first, followed by gas exchange and chlorophyll fluorescence parameters. However, the Ψleaf threshold for a given functional trait decline differed significantly among genotypes, with the exception of leaf hydraulic conductance. Our results suggested that leaf rolling was mechanistically linked to drought avoidance and tolerance traits and might serve as a useful phenotypic trait for rice breeding in future drought scenarios.

Funder

National Natural Science Foundation of China

China Agriculture Research System

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3