Role of hydraulic traits in stomatal regulation of transpiration under different vapour pressure deficits across five Mediterranean tree crops

Author:

Hernandez-Santana Virginia12,Rodriguez-Dominguez Celia M12ORCID,Sebastian-Azcona Jaime1,Perez-Romero Luis Felipe3ORCID,Diaz-Espejo Antonio12

Affiliation:

1. Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes , 41012 Seville , Spain

2. Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes , 41012 Seville , Spain

3. Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Avenida del Ejercito s/n. 21007 Huelva , Spain

Abstract

Abstract The differential stomatal regulation of transpiration among plant species in response to water deficit is not fully understood, although several hydraulic traits have been reported to influence it. This knowledge gap is partly due to a lack of direct and concomitant experimental data on transpiration, stomatal conductance, and hydraulic traits. We measured sap flux density (Js), stomatal conductance (gs), and different hydraulic traits in five crop species. Our aim was to contribute to establishing the causal relationship between water consumption and its regulation using a hydraulic trait-based approach. The results showed that the species-specific regulation of Js by gs was overall coordinated with the functional hydraulic traits analysed. Particularly relevant was the negative and significant relationship found between the Huber value (Hv) and its functional analogue ratio between maximum Js and gs (Jsmax/gsmax) which can be understood as a compensation to maintain the hydraulic supply to the leaves. The Hv was also significantly related to the slope of the relationship between gs and Js response to vapour pressure deficit and explained most of its variability, adding up to evidence recognizing Hv as a major trait in plant water relations. Thus, a hydraulic basis for regulation of tree water use should be considered.

Funder

Spanish Ministry of Science and Innovation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3