The transcription factor BnaA9.WRKY47 coordinates leaf senescence and nitrogen remobilization in Brassica napus

Author:

Cui Rui12,Feng Yingna12,Yao Jinliang2,Shi Lei12ORCID,Wang Sheliang2ORCID,Xu Fangsen12ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement , Wuhan 430070 , China

2. Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070 , China

Abstract

Abstract Nitrogen (N) is an essential macronutrient for plants, and its remobilization is key for adaptation to deficiency stress. However, there is limited understanding of the regulatory mechanisms of N remobilization in the important crop species Brassica napus (oilseed rape). Here, we report the identification of a transcription factor, BnaA9.WRKY47, that is induced by N starvation in a canola variety. At the seedling stage, BnaA9.WRKY47-overexpressing (OE) lines displayed earlier senescence of older leaves and preferential growth of juvenile leaves compared to the wild type under N starvation. At the field scale, the seed yield was significantly increased in the BnaA9.WRKY47-OE lines compared with the wild type when grown under N deficiency conditions and, conversely, it was reduced in BnaA9.WRKY47-knockout mutants. Biochemical analyses demonstrated that BnaA9.WRKY47 directly activates BnaC7.SGR1 to accelerate senescence of older leaves. In line with leaf senescence, the concentration of amino acids in the older leaves of the OE lines was elevated, and the proportion of plant N that they contained was reduced. This was associated with BnaA9.WRKY47 activating the amino acid permease BnaA9.AAP1 and the nitrate transporter BnaA2.NRT1.7. Thus, the expression of BnaA9.WRKY47 efficiently facilitated N remobilization from older to younger leaves or to seeds. Taken together, our results demonstrate that BnaA9.WRKY47 up-regulates the expression of BnaC7.SGR1, BnaA2.NRT1.7, and BnaA9AAP1, thus promoting the remobilization of N in B. napus under starvation conditions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3