Rapid leaf xylem acclimation diminishes the chances of embolism in grapevines

Author:

Sorek Yonatan12ORCID,Netzer Yishai34ORCID,Cohen Shabtai1,Hochberg Uri1ORCID

Affiliation:

1. Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization , Rishon LeZion , Israel

2. The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot 76100 , Israel

3. Department of Chemical Engineering, Ariel University , Ariel 40700 , Israel

4. Eastern R and D Center , Ariel 40700 , Israel

Abstract

Abstract Under most conditions tight stomatal regulation in grapevines (Vitis vinifera) avoids xylem embolism. The current study evaluated grapevine responses to challenging scenarios that might lead to leaf embolism and consequential leaf damage. We hypothesized that embolism would occur if the vines experienced low xylem water potential (Ψx) shortly after bud break or later in the season under a combination of extreme drought and heat. We subjected vines to two potentially dangerous environments: (i) withholding irrigation from a vineyard grown in a heatwave-prone environment, and (ii) subjecting potted vines to terminal drought 1 month after bud break. In the field experiment, a heatwave at the beginning of August resulted in leaf temperatures over 45 °C. However, effective stomatal response maintained the xylem water potential (Ψx) well above the embolism threshold, and no leaf desiccation was observed. In the pot experiment, leaves of well-watered vines in May were relatively vulnerable to embolism with 50% embolism (P50) at –1.8 MPa. However, when exposed to drought, these leaves acclimated their leaf P50 by 0.65 MPa in less than a week and before reaching embolism values. When dried to embolizing Ψx, the leaf damage proportion matched (percentage-wise) the leaf embolism level. Our findings indicate that embolism and leaf damage are usually avoided by the grapevines’ efficient stomatal regulation and rapid acclimation of their xylem vulnerability.

Funder

Israeli Ministry of Agriculture

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3