Comparison of plastid proteomes points towards a higher plastidial redox turnover in vascular tissues than in mesophyll cells

Author:

Boussardon Clément1ORCID,Carrie Chris2ORCID,Keech Olivier1ORCID

Affiliation:

1. Department of Plant Physiology, Umeå Plant Science Centre, Umeå University , S-90187 Umeå , Sweden

2. School of Biological Sciences, University of Auckland , 3A Symonds St, Auckland,1142 , New Zealand

Abstract

Abstract Plastids are complex organelles that vary in size and function depending on the cell type. Accordingly, they can be referred to as amyloplasts, chloroplasts, chromoplasts, etioplasts, or proplasts, to only cite a few. Over the past decades, methods based on density gradients and differential centrifugation have been extensively used for the purification of plastids. However, these methods need large amounts of starting material, and hardly provide a tissue-specific resolution. Here, we applied our IPTACT (Isolation of Plastids TAgged in specific Cell Types) method, which involves the biotinylation of plastids in vivo using one-shot transgenic lines expressing the Translocon of the Outer Membrane 64 (TOC64) gene coupled with a biotin ligase receptor particle and the BirA biotin ligase, to isolate plastids from mesophyll and companion cells of Arabidopsis using tissue specific pCAB3 and pSUC2 promoters, respectively. Subsequently, a proteome profiling was performed, which allowed the identification of 1672 proteins, among which 1342 were predicted to be plastidial, and 705 were fully confirmed according to the SUBA5 database. Interestingly, although 92% of plastidial proteins were equally distributed between the two tissues, we observed an accumulation of proteins associated with jasmonic acid biosynthesis, plastoglobuli (e.g. NAD(P)H dehydrogenase C1, vitamin E deficient 1, plastoglobulin of 34 kDa, ABC1-like kinase 1) and cyclic electron flow in plastids originating from vascular tissue. Besides demonstrating the technical feasibility of isolating plastids in a tissue-specific manner, our work provides strong evidence that plastids from vascular tissue have a higher redox turnover to ensure optimal functioning, notably under high solute strength as encountered in vascular cells.

Funder

Kempe Foundations

Alice Wallenberg Foundation

Swedish Governmental Agency

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3