Affiliation:
1. Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia , F-66860 Perpignan , France
2. Laboratoire Génome et Développement des Plantes, CNRS , F-66860 Perpignan , France
Abstract
Abstract
In the context of climate change, the global rise of temperature and intense heat waves affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which perturbs the cellular redox state. In plants, the dynamics of the cellular and subcellular redox state have been poorly investigated under high temperature. Glutathione plays a major role in maintaining the cellular redox state. We investigated its contribution in adaptation of Arabidopsis thaliana to contrasting high temperature regimes: high ambient temperature inducing thermomorphogenesis and heat stress affecting plant viability. Using the genetically encoded redox marker roGFP2, we show that high temperature regimes lead to cytoplasmic and nuclear oxidation and impact the glutathione pool. This pool is restored within a few hours, which probably contributes to plant adaptation to high temperatures. Moreover, low glutathione mutants fail to adapt to heat stress and to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate the transcriptomic signature in the two high temperature regimes and identified gene expression deviations in low glutathione mutants, which might contribute to their sensitivity to high temperature. Thus, we define glutathione as a major player in the adaptation of Arabidopsis to contrasting high temperature regimes.
Funder
Centre National de la Recherche Scientifique
Agence Nationale de la Recherche
Labex AGRO (under I-Site Muse framework) coordinated by the Agropolis Fondation
Laboratoires d’Excellence TULIP
Ecole Universitaire de Recherche (EUR) TULIP-GS
Publisher
Oxford University Press (OUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献