Integration of chromatin accessibility and gene expression reveals new regulators of cold hardening to enhance freezing tolerance inPrunus mume

Author:

Li Ping12ORCID,Zheng Tangchun1,Li Lulu1,Liu Weichao1,Qiu Like1,Ahmad Sagheer3,Wang Jia1,Cheng Tangren1,Zhang Qixiang1ORCID

Affiliation:

1. Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University , Beijing , China

2. College of Landscape and Tourism, Hebei Agricultural University , Baoding , China

3. Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University , Fuzhou , China

Abstract

AbstractLow temperature is one of the most important abiotic factors limiting the growth, development and geographical distribution of plants. Prunus mume is an attractive woody ornamental plant that blooms in early spring in Beijing. However, the molecular mechanisms underlying cold hardening to enhance freezing tolerance in Prunus genus remains elusive. This study examined the dynamic physiological responses induced by cold hardening, and identified freezing-tolerance genes by RNA-seq and ATAC-seq analyses. Cold hardening elevated the content of soluble substances and enhanced freezing resistance in P. mume. Transcriptome analysis indicated that the candidate differentially expressed genes (DEGs) were those enriched in Ca2+ signalling, mitogen-activated protein kinase (MAPK) cascade, abscisic acid signalling, and inducer of CBF expression 1 (ICE)-C-repeat binding factor (CBF) signalling pathways. The openness of gene chromatin positively correlated with the expression level of these genes. Thirteen motifs were identified in the open chromatin regions in the treatment group subjected to freezing after cold hardening. The chromatin opening of transcription start site at the proximal –177 region of cold-shock protein CS120-like (PmCSL) was markedly increased, while the expression level of PmCSL was significantly up-regulated. Overexpression of PmCSL in Arabidopsis significantly improved the freezing tolerance of transgenic plants. These findings provide new insights into the regulatory mechanism of freezing tolerance to improve breeding of cold-hardy P. mume plants.

Funder

National Key R and D Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3