The NIN-LIKE PROTEIN 7 transcription factor modulates auxin pathways to regulate root cap development in Arabidopsis

Author:

Kumar Narender1ORCID,Caldwell , Chloe1,Iyer-Pascuzzi Anjali S1ORCID

Affiliation:

1. Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University , 915 W. State Street, West Lafayette, IN 47907 , USA

Abstract

Abstract The root cap is a small tissue located at the tip of the root with critical functions for root growth. Present in nearly all vascular plants, the root cap protects the root meristem, influences soil penetration, and perceives and transmits environmental signals that are critical for root branching patterns. To perform these functions, the root cap must remain relatively stable in size and must integrate endogenous developmental pathways with environmental signals, yet the mechanism is not clear. We previously showed that low pH conditions altered root cap development, and these changes are mediated by the NIN LIKE PROTEIN 7 (NLP7) transcription factor, a master regulator of nitrate signaling. Here we show that in Arabidopsis NLP7 integrates nitrate signaling with auxin pathways to regulate root cap development. We found that low nitrate conditions promote aberrant release of root cap cells. Nitrate deficiency impacts auxin pathways in the last layer of the root cap, and this is mediated in part by NLP7. Mutations in NLP7 abolish the auxin minimum in the last layer of the root cap and alter root cap expression of the auxin carriers PIN-LIKES 3 (PILS3) and PIN-FORMED 7 (PIN7) as well as transcription factors that regulate PIN expression. Together, our data reveal NLP7 as a link between endogenous auxin pathways and nitrate signaling in the root cap.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3