Electron transport in cyanobacterial thylakoid membranes: are cyanobacteria simple models for photosynthetic organisms?

Author:

Shimakawa Ginga1ORCID

Affiliation:

1. Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University , 1 Gakuen Uegahara, Sanda, Hyogo 669-1330 , Japan

Abstract

Abstract Cyanobacteria are structurally the simplest oxygenic phototrophs, but it is difficult to understand the regulation of their photosynthesis because the photosynthetic and respiratory processes share the same thylakoid membranes and cytosolic space. This review aims to summarize the molecular mechanisms and in vivo activities of electron transport in cyanobacterial thylakoid membranes based on the latest progress in photosynthesis research in cyanobacteria. Photosynthetic linear electron transport for CO2 assimilation is the dominant electron flux in the thylakoid membranes. The capacity for O2 photoreduction mediated by flavodiiron proteins is comparable to that for photosynthetic CO2 assimilation in cyanobacteria. Additionally, cyanobacterial thylakoid membranes harbour the significant electron flux of respiratory electron transport through a homologue of respiratory complex I, which is also recognized as forming part of the cyclic electron transport chain if it is coupled with photosystem I in the light. Further, O2-independent alternative electron transport through hydrogenase and nitrate reductase function with reduced ferredoxin as the electron donor. Whereas all these electron transport chains are understood individually, the regulatory complexity of the whole system remains to be uncovered in the near future.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3