Affiliation:
1. Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA 50011 , USA
Abstract
Abstract
Phytohormones play a central role in plant development and environmental responses. Auxin is a classical hormone that is required for organ formation, tissue patterning, and defense responses. Auxin pathways have been extensively studied across numerous land plant lineages, including bryophytes and eudicots. In contrast, our understanding of the roles of auxin in maize morphogenesis and immune responses is limited. Here, we review evidence for auxin-mediated processes in maize and describe promising areas for future research in the auxin field. Several recent transcriptomic and genetic studies have demonstrated that auxin is a key influencer of both vegetative and reproductive development in maize (namely roots, leaves, and kernels). Auxin signaling has been implicated in both maize shoot architecture and immune responses through genetic and molecular analyses of the conserved co-repressor RAMOSA ENHANCER LOCUS2. Polar auxin transport is linked to maize drought responses, root growth, shoot formation, and leaf morphogenesis. Notably, maize has been a key system for delineating auxin biosynthetic pathways and offers many opportunities for future investigations on auxin metabolism. In addition, crosstalk between auxin and other phytohormones has been uncovered through gene expression studies and is important for leaf and root development in maize. Collectively these studies point to auxin as a cornerstone for maize biology that could be leveraged for improved crop resilience and yield.
Funder
United States Department of Agriculture
National Institute of Food and Agriculture
Agriculture and Food Research Initiative
USDA
Publisher
Oxford University Press (OUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献