Two decades of harnessing standing genetic variation for physiological traits to improve drought tolerance in maize

Author:

Messina Carlos D12ORCID,Gho Carla3,Hammer Graeme L24ORCID,Tang Tom5,Cooper Mark24ORCID

Affiliation:

1. Horticultural Sciences Department, University of Florida , Gainesville , FL , USA

2. ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland , Brisbane, Qld 4072 , Australia

3. School of Agriculture & Food Sciences, The University of Queensland , Brisbane, Qld 4072 , Australia

4. Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane , Qld 4072 , Australia

5. Corteva Agrisciences , Johnston, IA , USA

Abstract

Abstract We review approaches to maize breeding for improved drought tolerance during flowering and grain filling in the central and western US corn belt and place our findings in the context of results from public breeding. Here we show that after two decades of dedicated breeding efforts, the rate of crop improvement under drought increased from 6.2 g m−2 year−1 to 7.5 g m−2 year−1, closing the genetic gain gap with respect to the 8.6 g m−2 year–1 observed under water-sufficient conditions. The improvement relative to the long-term genetic gain was possible by harnessing favourable alleles for physiological traits available in the reference population of genotypes. Experimentation in managed stress environments that maximized the genetic correlation with target environments was key for breeders to identify and select for these alleles. We also show that the embedding of physiological understanding within genomic selection methods via crop growth models can hasten genetic gain under drought. We estimate a prediction accuracy differential (Δr) above current prediction approaches of ~30% (Δr=0.11, r=0.38), which increases with increasing complexity of the trait environment system as estimated by Shannon information theory. We propose this framework to inform breeding strategies for drought stress across geographies and crops.

Funder

Australian Research Council

Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture

IoT4Ag Engineering Research Center

National Science Foundation

NSF Cooperative

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3