Role of BraRGL1 in regulation of Brassica rapa bolting and flowering

Author:

Wang Yudan12,Song Shiwei12,Hao Yanwei12,Chen Changming12,Ou Xi12,He Bin12,Zhang Jiewen12,Jiang Zhehao12,Li Chengming12,Zhang Shuaiwei12,Su Wei12,Chen Riyuan12

Affiliation:

1. Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China , Ministry of Agriculture, College of Horticulture, , Guangzhou 510642, China

2. South China Agricultural University , Ministry of Agriculture, College of Horticulture, , Guangzhou 510642, China

Abstract

Abstract Gibberellin (GA) plays a major role in controlling Brassica rapa stalk development. As an essential negative regulator of GA signal transduction, DELLA proteins may exert significant effects on stalk development. However, the regulatory mechanisms underlying this regulation remain unclear. In this study, we report highly efficient and inheritable mutagenesis using the CRISPR/Cas9 gene editing system in BraPDS (phytoene desaturase) and BraRGL1 (key DELLA protein) genes. We observed a loss-of-function mutation in BraRGL1 due to two amino acids in GRAS domain. The flower bud differentiation and bolting time of BraRGL1 mutants were significantly advanced. The expression of GA-regulatory protein (BraGASA6), flowering related genes (BraSOC1, BraLFY), expansion protein (BraEXPA11) and xyloglucan endotransferase (BraXTH3) genes was also significantly upregulated in these mutants. BraRGL1-overexpressing plants displayed the contrasting phenotypes. BraRGL1 mutants were more sensitive to GA signaling. BraRGL1 interacted with BraSOC1, and the interaction intensity decreased after GA3 treatment. In addition, BraRGL1 inhibited the transcription-activation ability of BraSOC1 for BraXTH3 and BraLFY genes, but the presence of GA3 enhanced the activation ability of BraSOC1, suggesting that the BraRGL1-BraSOC1 module regulates bolting and flowering of B. rapa through GA signal transduction. Thus, we hypothesized that BraRGL1 is degraded, and BraSOC1 is released in the presence of GA3, which promotes the expression of BraXTH3 and BraLFY, thereby inducing stalk development in B. rapa. Further, the BraRGL1-M mutant promoted the flower bud differentiation without affecting the stalk quality. Thus, BraRGL1 can serve as a valuable target for the molecular breeding of early maturing varieties.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3