Chromosome-scale genome sequence of Suaeda glauca sheds light on salt stress tolerance in halophytes

Author:

Cheng Yan123,Sun Jin124,Jiang Mengwei1,Luo Ziqiang1,Wang Yu4,Liu Yanhui14,Li Weiming1,Hu Bing12,Dong Chunxing14,Ye Kangzhuo12,Li Zixian12,Deng Fang1,Wang Lulu1,Cao Ling13,Cao Shijiang5,Pan Chenglang6,Zheng Ping12,Wang Sheng3,Aslam Mohammad12,Wang Hong3,Qin Yuan12ORCID

Affiliation:

1. Fujian Agriculture and Forestry University State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, , Fuzhou 350002, China

2. Fujian Agriculture and Forestry University Pingtan Institute of Science and Technology, , Fuzhou 350400, China

3. University of Saskatchewan Department of Biochemistry, Microbiology and Immunology, , Saskatoon, SK S7N 5E5, Canada

4. Fujian Agriculture and Forestry University College of Agriculture, , Fuzhou 350002, China

5. Fujian Agriculture and Forestry University College of Forestry, , Fuzhou 350002, China

6. Minjiang University Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, , Fuzhou 350108, China

Abstract

Abstract Soil salinity is a growing concern for global crop production and the sustainable development of humanity. Therefore, it is crucial to comprehend salt tolerance mechanisms and identify salt-tolerance genes to enhance crop tolerance to salt stress. Suaeda glauca, a halophyte species well adapted to the seawater environment, possesses a unique ability to absorb and retain high salt concentrations within its cells, particularly in its leaves, suggesting the presence of a distinct mechanism for salt tolerance. In this study, we performed de novo sequencing of the S. glauca genome. The genome has a size of 1.02 Gb (consisting of two sets of haplotypes) and contains 54 761 annotated genes, including alleles and repeats. Comparative genomic analysis revealed a strong synteny between the genomes of S. glauca and Beta vulgaris. Of the S. glauca genome, 70.56% comprises repeat sequences, with retroelements being the most abundant. Leveraging the allele-aware assembly of the S. glauca genome, we investigated genome-wide allele-specific expression in the analyzed samples. The results indicated that the diversity in promoter sequences might contribute to consistent allele-specific expression. Moreover, a systematic analysis of the ABCE gene families shed light on the formation of S. glauca’s flower morphology, suggesting that dysfunction of A-class genes is responsible for the absence of petals in S. glauca. Gene family expansion analysis demonstrated significant enrichment of Gene Ontology (GO) terms associated with DNA repair, chromosome stability, DNA demethylation, cation binding, and red/far-red light signaling pathways in the co-expanded gene families of S. glauca and S. aralocaspica, in comparison with glycophytic species within the chenopodium family. Time-course transcriptome analysis under salt treatments revealed detailed responses of S. glauca to salt tolerance, and the enrichment of the transition-upregulated genes in the leaves associated with DNA repair and chromosome stability, lipid biosynthetic process, and isoprenoid metabolic process. Additionally, genome-wide analysis of transcription factors indicated a significant expansion of FAR1 gene family. However, further investigation is needed to determine the exact role of the FAR1 gene family in salt tolerance in S. glauca.

Funder

Postdoctoral Foundation of China

Science and Technology Innovation Project of Pingtan Institute of Science and Technology

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3